Hoeveel elektrische auto's kan de wereld aan?
In het boek ‘Hoeveel elektrische auto’s kan de wereld aan?’ onderzoekt geologisch chemicus Theo Henckens de grondstoffenuitdaging als de hele wereld met elektrische auto’s zal gaan rijden. Want dan hebben we geen fossiele uitstoot meer, maar voor de productie van de batterijen en elektromotoren van die auto’s zijn veel grondstoffen nodig: het totale gewicht van een 65 kWh batterij is tussen de 450 en 520 kg. Het gaat daarbij om onder meer koper, grafiet, aluminium, mangaan, kobalt, nikkel en lithium als hoofdbestanddelen, afhankelijk van het type batterij.
Van de redactie Vexpansie |Peter Martens redactie Vexpansie
Henckens schetst een ‘ideaal scenario’ waarbij rond 2080 over de hele wereld het autobezit gelijk is aan dat in de Europese Unie nu, waarbij het aantal auto’s op fossiele brandstof rond 2060 afgebouwd zou moeten zijn. Dat zou rond 2080 neerkomen op 6,8 miljard elktrische auto’s op de weg. Bij een gemiddelde levensduur van elektrische auto’s van 25 jaar zou dat een jaarlijkse productie van 270 miljoen auto’s betekenen. In 2023 werden wereldwijd ongeveer tien miljoen elektrische auto’s verkocht: 13% van het totaal. Met deze cijfers wordt de uitdaging duidelijk gesteld.
Vervolgens wordt de behoefte en winning van de belangrijkst grondstoffen in detail geanalyseerd. Als illustratie de situatie met betrekking tot koper, dat behalve in elektrische auto’s ook in veel andere high-tech toepassingen wordt gebruikt. In 2020 was wereldwijd de koperproductie ongeveer 20 miljoen ton. Volgens het scenario zal dat in 2060 rond 60 miljoen ton liggen. Daarbij wordt koper gewonnen uit erts, waarvan minder dan 1% koper is en de rest als afval behandeld zal moeten worden (terugstorten in de groeves). Dat betekent dus dat in 2060 jaarlijks 600 miljoen ton erts gewonnen moet worden om de benodigde koper te produceren. Ter vergelijking: in de beruchte Garzweiler Tagesbau (net over de Limburgse grens in Duitsland) wordt gedurende 20 jaar jaarlijks 50 miljoen ton bruinkool uitgegraven.
Op basis van zeer gedetailleerde analyse van geologische schaarste van minerale grondstoffen is dan ook de conclusie dat het geschetste scenario met de batterij technologie zoals die nu is te voorzien, niet haalbaar zal zijn. We zullen ons dus anders moeten verplaatsen dan allemaal in onze eigen elektrische auto. De verwachting is dat de grondstoffen door de schaarste veel duurder worden. Dat zal effect hebben op het aankoopgedrag van mensen en ruimte scheppen voor alternatieve ontwikkelingen ten opzichte van voor ieder een eigen auto. Met deze hogere prijzen wordt het ook onwaarschijnlijker, dat het deel van de wereldbevolking die nu nog niet over een eigen auto beschikt, dat is de toekomst wel zal kunnen.
Ten slotte worden in het boek ook drie hoogleraren op gebied van mobiliteit geciteerd:
- Erik Verhoef pleit voor inzet van duurzame alternatieven zoals fietsen en openbaar vervoer en andere slimme mobiliteitstoepassingen, zoals deelauto’s en slimme verkeermanagementsystemen.
- Jos van Ommeren richt zich op verminderen van autogebruik, bijvoorbeeld door slimme kilometerheffing, waardoor mensen bewuster gaan nadenken over hun reisgedrag, met meer ruimte voor fietsen en openbaar vervoer.
- Bert van Wee pleit voor minder afhankelijkheid van de auto door stimuleren van fiets, openbaar vervoer, deelauto’s en slimme verkeermanagementsystemen. Daarnaast meer inzet op integrale benadering van mobiliteit en interacties tussen de verschillende vormen van vervoer.
Op basis hiervan wordt een scenario geschetst met taxi robots (uiteraard elektrisch) die opereren vanuit bestaande parkeergarages en op bestelling naar de gewenste vertreklokatie komen. Het totaal aantal auto’s zou daarmee drastisch omlaag kunnen, want onze auto staat immers 90% van de tijd stil. Aanvullend kunnen dan deelauto’s worden ingezet voor langduriger gebruik (bijvoorbeeld voor vakantie). In dit integrale beeld vormen de tot mobility-hubs getransfereerde parkeergarages een prominente rol, waardoor de openbare ruimte in de binnensteden verder verkeersluw kan worden.
Meer informatie
> Hoeveel elektrische auto’s kan de wereld aan?
> Artikel van Sjoerd Stienstra ‘Iedereen zijn eigen elektrische auto, moeten we dat willen?’
Bekijk meer artikelen
Utrecht eerste stad wereldwijd die elektrische deelauto’s gebruikt als grootschalige buurtbatterijen
Inwoners van Vexpan lid Utrecht krijgen als eerste in Nederland de kans om grootschalig te ervaren wat een ‘rijdende buurtbatterij’ kan betekenen.
Lees meerNaar een circulaire laadindustrie voor elektrische voertuigen
De industrie voor de laadinfrastructuur voor elektrische voertuigen (EV) heeft wereldwijd te maken met materiaalschaarste. Daarom werkt NKL samen met Cenex Nederland aan een circulair ecosysteem voor de laadindustrie van EV.
Lees meerKNVB en Revolt sluiten partnership om voetbalverenigingen te verduurzamen
KNVB en Revolt, een Nederlandse start-up gespecialiseerd in laadpalen, zijn een samenwerking aangegaan om Nederlandse voetbalverenigingen te verduurzamen.
Lees meerNieuwe manier slim laden gebruikt meer zonne- en windenergie en spaart CO2
Door een nieuwe manier van slim laden kunnen elektrische auto’s in Nederland meer wind- en zonnestroom benutten, is er minder stroom uit gas- en kolencentrales nodig, daalt de CO2-uitstoot.
Lees meerSlimme kentekenherkenning voor milieubewuste gedifferentieerde parkeertarieven
Door kentekenherkenning te koppelen aan de databases van het RDW, wordt bij de slagboom bepaald dat uitstootvrije voertuigen minder betalen voor parkeren. Of minder plek is voor vervuilende voertuigen.
Lees meerMinister Jetten trekt honderden miljoenen euro’s uit voor laadinfrastructuur
Minister Jetten voor Klimaat en Energie trekt honderden miljoenen euro’s uit voor de realisatie van nieuwe laadinfrastructuur voor elektrische vervoer. Dat blijkt uit het ‘Ontwerp Meerjarenprogramma Klimaatfonds 2024’.
Lees meer